Precise Modeling of Emerging Electronic Structures by Artificial Neural Networks

نویسندگان

  • Josef Dobeš
  • Abhimanyu Yadav
چکیده

Nowadays, there are many emerging electronic structures for which their nonlinear models for computeraided design are necessary, especially for the ones from the areas of nanoelectronics and microwave techniques. However, for such structures, sufficiently accurate analytic models are mostly unavailable. This is partially caused by the fact that the physical principles of the element operation are sometimes not fully clear (especially for quantum devices), and also by bizarre characteristics of some of the elements (typically with irregularities and a hysteresis in parts of characteristics, or by negative differential conductances that are typical for the microwave transistors). In such cases, models based on artificial neural networks are necessary and useful for these elements. Majority of the elements can be characterized with a single artificial neural network. However, for certain kinds of elements, a cooperation of more artificial neural networks is necessary. This case is described in the paper first, where the Pt−TiO2−x−Pt memristor characteristic with an extraordinary (but typical) hysteresis is approximated by a set of cooperative artificial neural networks, as a single network is unable to characterize this unconventional element. Second, an ability of the artificial neural networks for modeling the negative differential conductance is demonstrated by characterizing the 110GHz pseudomorphic high electron mobility transistor (pHEMT). Moreover, a semiautomatic selection of an optimal structure of the networks (both numbers of hidden layers and the numbers of the elements in the layers) is also suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012